Journal of Artificial Intelligence and Consciousness

The Journal of Artificial Intelligence and Consciousness (JAIC) will offer a multidisciplinary platform to discuss AI and consciousness in the light of robotics and artificial systems, computational science, psychology, philosophy of mind, ethics, and neuroscience.

The aims and scope of the journal are:

  • articles that take inspiration from biological consciousness and/or that explore theoretical issues of consciousness to build robots and AI systems that show forms of functional consciousness;
  • articles that employ robots and AI systems as tools to model and better understand biological mechanisms of consciousness;
  • articles that discuss ethical problems emerging or uncovered through the overlap of AI and consciousness, and that investigate the ethical and societal impact of consciousness and the limits of it, and
  • to pursue the hybridization between the field of AI and the field of consciousness studies.

Go to JAIC journal website.

DARPA Workshop on Self-Aware Machines

In 2004, DARPA and John McCarthy organised a Workshop on Self-Aware Computing Systems because the topic of artificial self-awareness was gaining momentum. It was a workshop by invitation at Washington D.C. Most participants came from USA, but there were two from Europe: Aaron Sloman from UK and Ricardo Sanz from Spain.

Sanz, Hayes, Minsky at DARPA Workshop on Self-Aware Computing Systems.

These were the thirty-three participants in the workshop:

Aaron SlomanEyal AmirPush Singh
Bernard BaarsJames Van OverscheldeRaghu Ramakrishnan
Brian WilliamsJohn McCarthyRicardo Sanz
Greg SullivanKen ForbusRichard Scherl
Danny BobrowTom HinrichsRichard Gabriel
Markus FromhertzLen SchubertRichard Thomason
Deborah McGuinnessLokendra ShastriRobert Stroud
Drew McDermottMichael CoxSheila McIlraith
Don PerlisMichael WhitbrockStan Franklin
Mike AndersonMike AndersonStuart Shapiro
Tim OatesOwen HollandYaron Shlomi
DARPA Worksop participants.

During three days we discussed the possibilities and approaches to machine self-awareness, within the specific pespective of artificial intelligence. Twenty years after, the discussion remains at the same point. Not much advance has been produced

Maybe the problem is too difficult for human minds.

Premio Innovatech 2020 a la tecnología inTelos

El equipo UPM ASLab + TU Delft ha obtenido el Primer Premio en el concurso UPM_innovatech 2T Challenge de 2020.

Esta es una iniciativa de desafío competitivo para investigadores, pionera en España, que busca reconocer y premiar las tecnologías más innovadoras de la Universidad Politécnica de Madrid y contribuir a su desarrollo y comercialización.

La tecnología presentada por el equipo ASLab+TUDelft, InTelos, es el resultado de años de investigación en sistemas auto-conscientes en ASLab. Esta es una tecnología que permite emplear el conocimiento de ingeniería para dotar al sistema de capacidades cognitivas de auto-percepción y control que le dotan de una mayor adaptabilidad, resiliencia y autonomía. Es una tecnología resultante del proyecto ASys.

Singularidad Tecnológica

Evento sobre la Singularidad Tecnológica organizado por la Sección de Pensamiento Marginal del Ateneo de Madrid en 2021.

PRESENTA: Brígida de Fez Algarra
INTRODUCE: José Luis Cordeiro
MODERA: Lola Marcos

PONENTES:
Antonio Miguel Carmona, PhD (Economía) Profesor de Economía, Oficial del Ejército del Aire (RV) y Político
Gabriel Vázquez Torres, Ingeniero Informático, MSc (c) Experto en Data Science e Inteligencia Artificial
Ricardo Sanz, PhD (Ingeniería) Profesor e Investigador de la Universidad Politécnica de Madrid

Lógica y Terminators

La inteligencia artificial es una tecnología muy relevante y de gran impacto potencial en la industria y la sociedad. En esta charla se comentaron algunos de los principales temas que sirvieron de base para un debate con los futuros ingenieros industriales de UPM ETSII. Una conferencia pronunciada dentro del ciclo de conferencias Hazte Industrial.

La versión PDF de las diapositivas de la charla se puede descargar desde aquí.

It has always been models

There is a relatively recent boom on model-based X. Model-based development, model-based design, model-based systems engineering, …

In all the domains of engineering, it looks like we have just discovered the use of models to support our work. But this is, obviously, false. It has always been models. All around. All the time.

When an engineer-to-be starts his studies, the first he learns is physics and mathematics: i.e. how to model reality and the language to build the model. In recent parlance we would say that math is just a metamodel of reality. A model of the models that we use to capture the knowledge we have about an extant system or the ideas we have about a system to be engineered.

The distinction between knowledge and ideas may seem relevant but it is not so much. They’re all about mental content; that may or may not be related or co-related to some reality out there. Both knowledge and ideas are models of realities-that-are or realities-to-be that are of relevance to us or our stakeholders.

It has always been models. In our minds and in the collaborative processes that we use to engineer our systems. Model-based X is not new. It is just good, old-fashioned engineering.

The Self Beyond Humans

I will give a talk titled The Self Beyond Humans at Reykjavik University on May 16, 2013. The talk addresses the issue of the construction of the self from the perspective of machine consciousness.

Many current research trends point toward a technology of robot selfhood. The pursuit of selves for machines is motivated from a desire to equip robots with sophisticated human-like competences. Self and self-awareness constitute one of the cornerstones of consciousness, a whimsically peculiar aspect of our humanhood. While humans are the best “ground truth” we have in this respect, the best example to inspect and imitate, anthropomorphism is a procrustean path that shall be followed with care. Many attempts to create artificial selves are based on a shallow replication of biological behavioral traits; a true engineering technology of robot selves, however, must be based on a rigorous theory of consciousness, beyond humans.

A scientific, general theory of consciousness should be much more than just some “scientific progress towards understanding how consciousness can emerge form the activity of neurons and their interactions”. While the human brain is our best source of information about consciousness, the construction of a universal, general theory of consciousness is hampered by the almost absolute and excessive focus on the human brain, human cognition, and human neurophysiology. Human brains should not be the only systems we consider in work; a general theory should address at least the many other systems of interest: other kinds of animals, machines, and even social groups. In this talk I will address the emergence of a theoretical framework for Self Beyond Humans. This theoretical framework shall eventually lead to technological assets for robot selfhood to enable them to properly operate in ecological, medical, technical and economic terms in a variety of circumstances. A positive theory of self shall be centered on system functional architecture, sidetracking philosophical discussions on the nature of ‘content and self’ and leveraging the value of concrete topologies and measurements.

Future robots will have selves that may be enormously alien to humans; but, in a very precise sense, they will be quite similar to ours but with a deeper, purer essence, devoid of all that noise produced by biological evolution.

Sensores Inteligentes y el Futuro de las Máquinas

La incorporación de inteligencia artificial a los sensores de las máquinas permite el desarrollo de aplicaciones sofisticadas de monitorización y control que llevarán, eventualmente, a la construcción de máquinas auto-conscientes.

El primer nivel ataca el problema del monitorizar el cambio

La integración de tecnología de sensores inteligentes y de medición avanzada en las máquinas y sistemas mecánicos, permite implementar aplicaciones de monitorización de condición de máquinas. Los sistemas de mantenimiento basados en la condición permiten disminuir las interrupciones no programadas y optimizar el rendimiento de la máquina, reduciendo costes de mantenimiento y reparación. Se puede utilizar también la tecnología de medición y sensores para aumentar la seguridad de la maquinaria gracias a la disponibilidad de la información sobre el estado del sistema en cualquier momento durante la operación. La disponibilidad de diferentes infraestructuras técnicas permite desplegar los sistemas de monitorización en la propia máquina, por medio de sistemas empotrados, o remotamente, por medio de sistemas distribuidos.

El segundo nivel ataca el problema de anticipar y controlar el cambio

La explotación local de la información de condición y la disponibilidad de modelos operativos de la máquina, permite hacer una integración más transparente de la información del sensor con el controlador, habilitando mecanismos de anticipación y control del cambio. Esto permite desarrollar sistemas de protección o de auto-curación o máquinas. La construcción de sistemas adaptativos permite adaptar la operación de la maquina a las características cambiantes de los componentes mecánicos que la constituyen. La maquina se hace auto-consciente de su propio cuerpo. Esto permite además la mejora de los modelos de la propia máquina, teniendo en cuenta el desgaste y la variación observada, permitiendo implementar controladores adaptativos de mejores prestaciones.

El tercer nivel ataca el problema del aprovechar el cambio

Por último, mediante la integración de sensores avanzados con inteligencia artificial se pueden construir máquinas que aprovechan la dinámica propia y de la realidad, para buscar condiciones optimas de explotación. La máquinas con controles inteligentes dinámicos se adaptan a la evolución de los parámetros ambientales y del proceso de fabricación para acercarse a resultados cercanos a los óptimos. La incorporación de modelos flexibles de conocimiento de los procesos en curso -en los que participa la máquina- permite un comportamiento adaptable y flexible. La máquina puede detectar alteraciones en sí misma, en las materias prima con las que opera, o en las tareas a las que tiene que hacer frente dentro del proceso productivo.